The Feichtinger Conjecture and Reproducing Kernel Hilbert Spaces
نویسندگان
چکیده
In this dissertation, we study the Feichtinger Conjecture(FC), which has been shown to be equivalent to the celebrated Kadison-Singer Problem. The FC states that every norm-bounded below Bessel sequence in a Hilbert space can be partitioned into finitely many Riesz basic sequences. This study is divided into two parts. In the first part, we explore the FC in the setting of reproducing kernel Hilbert spaces. The second part of this study introduces two new directions to explore the FC further, which are based on a factorization of positive operators in B(`). The results presented in the later part have a mixed flavor in the sense that some of them point in the direction of finding a negative answer to the FC, whereas others prove the FC for some special cases. In the first part of the thesis, we show that in order to prove the FC it is enough to prove that in every Hilbert space, contractively contained in the Hardy space H, each Bessel sequence of normalized kernel functions can be partitioned into finitely many Riesz basic sequences. In addition, we examine some of these spaces and show that the above holds in them. We also look at products and tensor products of kernels, where using Schur products we obtain some interesting results. These results allows us to prove that in the Bargmann-Fock spaces on the n-dimensional complex plane and the weighted Bergman spaces on the unit ball, the Bessel sequences of normalized kernel functions split into finitely many Riesz basic sequences. We also prove that the same result holds in the H α,β spaces as well.
منابع مشابه
Some Properties of Reproducing Kernel Banach and Hilbert Spaces
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...
متن کاملFisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework
Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...
متن کاملSolving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کاملReproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation
In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.
متن کاملSolving Fuzzy Impulsive Fractional Differential Equations by Reproducing Kernel Hilbert Space Method
The aim of this paper is to use the Reproducing kernel Hilbert Space Method (RKHSM) to solve the linear and nonlinear fuzzy impulsive fractional differential equations. Finding the numerical solutionsof this class of equations are a difficult topic to analyze. In this study, convergence analysis, estimations error and bounds errors are discussed in detail under some hypotheses which provi...
متن کامل